

Assembling crop genomes with 2nd and 3rd generation sequencing

Michael Schatz

Oct 8, 2012 Strategies for de novo assemblies of complex crop genomes The Genome Analysis Center, Norwich Research Park

#ESFCrops / @mike_schatz

Outline

- I. Ingredients for a good assembly
- 2. 2nd Generation Sequencing & Assembly
 - I. Sacred Lotus
 - 2. Raspberry
 - 3. Wheat
- 3. 3rd Generation Sequence & Assembly
 - I. Parrot
 - 2. Rice

Assembling a Genome

2. Construct assembly graph from overlapping reads

...AGCCTAGACCTACAGGATGCGCGACACGT GGATGCGCGACACGTCGCATATCCGGT...

3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Why are genomes hard to assemble?

- **I.** Biological:
 - (Very) High ploidy, heterozygosity, repeat content

2. Sequencing:

- (Very) large genomes, imperfect sequencing

3. Computational:

- (Very) Large genomes, complex structure

4. Accuracy:

- (Very) Hard to assess correctness

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads & mates must be longer than the repeats

- Short reads will have *false overlaps* forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC, Witkowski, McCombie, WR (2012) *Genome Biology*. 12:243

Typical contig coverage

Imagine raindrops on a sidewalk

Mintegram of Iselis in each bio Total Iselis: 2000 Empty bios: 48

Balls in Bins 3x

Balls in Bins 5x

Coverage and Read Length

Idealized Lander-Waterman model

- Reads start at perfectly random positions
- Contig length is a function of coverage and read length
 - Short reads require much higher coverage to reach same expected contig length
- Need even high coverage for higher ploidy, sequencing errors, sequencing biases
 - Recommend 100x coverage

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) *Genome Research*. 20:1165-1173.

Unitigging / Unipathing

- After simplification and correction, compress graph down to its non-branching initial contigs
 - Aka "unitigs", "unipaths"

Repeats and Read Length

- Explore the relationship between read length and contig N50 size
 - Idealized assembly of read lengths: 25, 35, 50, 100, 250, 500, 1000
 - Contig/Read length relationship depends on specific repeat composition

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (2010) *BMC Bioinformatics*. 11:21.

Repetitive regions

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$(b_1b_2b_k)^N$ where $I \le k \le 6$ CACACACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	<i>Alu</i> sequence (~280 bp) Mariner elements (~80 bp)	13%
LINEs (Long Interspersed Nuclear Elements)	~500 – 5,000 bp	21%
LTR (long terminal repeat) retrotransposons	Ту I -copia, Ту3-gypsy, Pao-BEL (~100 – 5,000 bp)	8%
Other DNA transposons		3%
Gene families & segmental duplications		4%

- Over 50% of mammalian genomes are repetitive
 - Large plant genomes tend to be even worse
 - Wheat: I6 Gbp; Pine: 24 Gbp

Quality

Error Correction with Quake

I. Count all "Q-mers" in reads

- Fit coverage distribution to mixture model of errors and regular coverage
- Automatically decide threshold for trusted k-mers

2. Correction Algorithm

- Consider editing erroneous kmers into trusted kmers in decreasing likelihood
- Includes quality values, nucleotide/ nucleotide substitution rate

Quake: quality-aware detection and correction of sequencing reads. Kelley, DR, Schatz, MC, Salzberg, SL (2010) *Genome Biology*. 11:R116

Outline

I. Ingredients for a good assembly

2. 2nd Generation Sequencing & Assembly

- I. Sacred Lotus
- 2. Raspberry
- 3. Wheat
- 3. 3rd Generation Sequence & Assembly
 - I. Parrot
 - 2. Rice

Sacred Lotus Sequencing

Nelumbo nucifera Gaertn.

- Known for religious significance, herbal medicines, seed longevity, and water repellency
- Member of the Proteales, which lies outside of the core eudicots
 - Closest relatives are shrubs and trees belonging to the Proteaceae and Platanaceae
 - ~929Mbp Genome Size

Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.) Ming, R, et al. (2012) Under Review

Sacred Lotus Sequencing Approach

Technology	Read Length	Fragment Length	Coverage
Illumina	100 bp	180 bp	33x
	100 bp	500 bp	35x
	35 bp	3,800 bp	6.4x
	35 bp	8,000 bp	6.Ix
454	*** 35 bp	20,000 bp	0.2x

Sacred Lotus Assembly

Adding 20kbp mates improved scaffold N50 from 600kbp to 3.4Mbp

- Align 454 mates to draft assembly, extract the 35bp sequence from consensus
- Error corrects, remove duplicates

Assembly	Status	Number	N50 (kb)	Longest (kb)	size (Mb)	% cov
Contigs	All	58409	38.8	286	707	76.1
Scaffold	All	3605	3,435	14,300	804	86.5

Annotation	number	Mean (bp)	Median (bp)	Length (Mb)	% genome	% GC
Gene	26,685	6562	3917	175	21.7	36
Exons	132,653	294	153	39	4.8	43
Introns	108,887	1249	283	136	16.9	34
TE	396,000	1111	50.00	440	47	
Repeats	232,000	370		86	8.9	

Raspberry Sequencing Rubus idaeus

- Important food crop (~\$IB / year in production). High amounts of fiber, vitamin C, manganese, and other nutrients
- Member of the Rosaceae family, along with other common fruits
 - Including apple, peach, and strawberry
 - ~350Mbp Genome Size

The genome of the red raspberry (Rubus idaeus L.) Price J, Ward JA et al. (2012) In preparation

Heterozygous Genomes

Resolving the Heterozygosity

Chromosome 1 TATAATCAACCCGCTTGCCGATCTGATG

Chromosome 2 TATAATCAACCCACTTGCCGATCTGATG

- Exploring various approaches to identify and resolve the heterozygosity.
 - Improved scaffold N50 to more than 250kbp
 - Currently using genetic map to form larger linkage groups

De novo identification of "heterotigs" towards accurate and in-phase assembly of complex plant genomes

Price J, et al. (2012) Proceedings of BIOCOMP'12. Las Vegas, NV

Wheat Sequencing

Aegilops tauschii

- One of the most important cereal crops in the world
- A. tauschii is one of the three ancestral species (DD) in modern bread wheat (*Triticum aestivum*)
 - Also looking to sequence other 2 species, and bread wheat
 - ~4.5Gbp Genome Size

In Collaboration with McCombie and Ware labs

Wheat Sequencing & Assembly

Technology	Read Length	Fragment Length	Coverage
Illumina	100 bp	180 bp	69x
	100 bp	300 bp	50x
	35 bp	2,000 bp	6.6x
	35 bp	5,000 bp	6.5x

Assembly	Count	Max	N50	Sum
Scaffolds	97,313	2.76 Mbp	23,193	I.36 Gbp (30%)
Contigs	556,767	165 kbp	4,623	928 Mbp (20%)

- Poor coverage of the genome due to extreme repeat content
 - Had to downsample reads to fit into RAM
 - Randomly discard reads covered by kmers that occur more than 500 times
- Coverage may be sufficient for "gene-space"

Outline

- I. Ingredients for a good assembly
- 2. 2nd Generation Sequencing & Assembly
 - I. Sacred Lotus
 - 2. Raspberry
 - 3. Wheat
- 3. 3rd Generation Sequence & Assembly
 - I. Parrot
 - 2. Rice

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads & mates must be longer than the repeats

- Short reads will have *false overlaps* forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC, Witkowski, McCombie, WR (2012) *Genome Biology*. 12:243

Hybrid Sequencing

Illumina Sequencing by Synthesis

High throughput (60Gbp/day) High accuracy (~99%) Short reads (~100bp)

Pacific Biosciences

SMRT Sequencing

Lower throughput (600Mbp/day) Lower accuracy (~85%) Long reads (1-2kbp+)

SMRT Sequencing

Imaging of florescent phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

Time

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf

• Standard sequencing

- Long inserts so that the polymerase can synthesize along a single strand

• Circular consensus sequencing

- Short inserts, so polymerase can continue around the entire SMRTbell multiple times and generate multiple sub-reads from the same single molecule.

SMRT Sequencing Data

Yeast (Pre-release Chemistry / 2010)

65 SMRT cells 734,151 reads after filtering Mean: 642.3 +/- 587.3 Median: 553 Max: 8,495

Sample of 100k reads aligned with BLASR requiring >100bp alignment Average overall accuracy: 83.7%, 11.5% insertions, 3.4% deletions, 1.4% mismatch

Read Position

Consistent quality across the entire read

- Uniform error rate, no apparent biases for GC/motifs
- Sampling artifacts at beginning and ends of alignments

	Consensus Quality: Probability Review					
	Roll <i>n</i> dice => What is the probability that at least half are 6's (Consensus is wrong if at least half the bases are wrong)					
n	Min to Lose	Losing Events	P(Lose)			
I		1/6	16.7%			
2		P(lof 2) + P(2 of 2)	30.5%			
3		P(2 of 3) + P(3 of 3)	7.4%			
4		P(2 of 4) + P(3 of 4) + P(4 of 4)	13.2%			
5		P(3 of 5) + P(4 of 5) + P(5 of 5)	3.5%			
n	ceil(n/2)	$\sum_{i=\lceil n/2 \rceil}^{n} P(i \ of \ n) = \sum_{i=\lceil n/2 \rceil}^{n} \binom{n}{i} (p)^{i} (1-p)^{n-1}$	-i			

Consensus Accuracy and Coverage

Coverage can overcome random errors

- Dashed: error model from binomial sampling; solid: observed accuracy
- For same reason, CCS is extremely accurate when using 5+ subreads

$$CNS Error = \sum_{i=\lceil c/2 \rceil}^{c} \binom{c}{i} (e)^{i} (1-e)^{n-i}$$

PacBio Error Correction

http://wgs-assembler.sf.net

- I. Correction Pipeline
 - I. Map short reads (SR) to long reads (LR)
 - 2. Trim LRs at coverage gaps
 - 3. Compute consensus for each LR

2. Error corrected reads can be easily assembled, aligned

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) *Nature Biotechnology*. doi:10.1038/nbt.2280

Error Correction Results

Correction results of 20x PacBio coverage of E. coli K12 corrected using 50x Illumina

Celera Assembler

http://wgs-assembler.sf.net

- I. Pre-overlap
 - Consistency checks
- 2. Trimming
 - Quality trimming & partial overlaps
- 3. Compute Overlaps
 - Find high quality overlaps
- 4. Error Correction
 - Evaluate difference in context of overlapping reads
- 5. Unitigging
 - Merge consistent reads
- 6. Scaffolding
 - Bundle mates, Order & Orient
- 7. Finalize Data
 - Build final consensus sequences

SMRT-Assembly Results

Typester.	Teleforge	Activity by	Annalisity by	# Campo	the Congliagh	
Lanial Materia	Staatus 1923 2016					
index Wass 1000	Radio Phil (15)		48.640			#-441#4E-08841
1.44.811	Number 1976 1984	10475	1-100400		****	100000300000000000000000000000000000000
india Masi 1981	Auto Hold 10X		1.007.000	1.0	39.99,08.26	him-ansaton-
	And ND Parity Fill Street, NY, May		100.00		1010-0410-	\$1.000-00-00-00.016/
E adv700101	9x8x-075-93	530440	100101		101515	1410
milei 127 au 1990.	Pacifier 20k PBA seamond by 20k (CO)		1.07 ***		10124	18/24
	Aven Texamon and a 113 - 113 and		10410		set (e)	17.96
	Radia MA PILE control in MR COL		1-10.000		1094407	19-03
	Ann Facility Pile 8 105 - 123 200		1-0100		1.00940	101.04
	Manually Concession (Concession)		1.011.011		40.00	88.00
Longia State	(Same ON Step	11110	10.014.000		39.99.0114	transie termine
index 17 au 1991	Radio Rick UX		10100406	100	21000310736	all star in spin parameter
	Rate Paulity Plast 175 - Danias VIX 1984		10,000,000	10	30 66/30 %	ALCONTRACTORY.
interiment address	Barrier, Well, Children's paired and \$10,000 man prints	1004	1423 102 499	24.680	1.669.000	4798
	encircles physically from a president party and		-	14.75	10.09	15.03
index Million (1976)	and their a the first first to first.		1010446	11.00	COM NOT	-

Hybrid assembly results using error corrected PacBio reads Meets or beats Illumina-only or 454-only assembly in every case *** Able to assemble entire microbial chromosomes into individual contigs ***

Improved Gene Reconstruction

FOXP2 assembled on a single contig

Transcript Alignment

- Long-read single-molecule sequencing has potential to directly sequence full length transcripts
 - Raw reads and raw alignments (red) have many spurious indels inducing false frameshifts and other artifacts
 - Error corrected reads almost perfectly match the genome, pinpointing splice sites, identifying alternative splicing
- New collaboration with Gingeras Lab looking at splicing in human

PacBio Technology Roadmap

Internal Roadmap has made steady progress towards improving read length and throughput

Very recent improvements:

- I. Improved enzyme: Maintains reactions longer
- "Hot Start" technology: Maximize subreads
 - . MagBead loading: Load longest fragments

PACIFIC BIOSCIENCES® CONFIDENTIAL

Preliminary Rice Assemblies

In collaboration with McCombie & Ware labs @ CSHL

Long Read CNV Analysis

Aluminum tolerance in maize is important for drought resistance and protecting against nutrient deficiencies

- Segregating population localized a QTL on a BAC, but unable to genotype with Illumina sequencing because of high repeat content
- Long read PacBio sequencing revealed an additional copy of the ZnMATEI membrane transporter and enabled assembly of the entire gene cluster

A rare gene copy-number variant that contributes to maize aluminum tolerance and adaptation to acid soils

Maron, LG et al. (2012) Under review.

Why are crop genomes hard to assemble?

I. Biological:

- (Very) High ploidy, heterozygosity, repeat content

2. Sequencing:

- (Very) large genomes, imperfect sequencing

3. Computational:

- (Very) Large genomes, complex structure

4. Accuracy:

- (Very) Hard to assess correctness

With new biotechnologies and improved algorithms we can address these challenges

=> Cautiously optimistic

Acknowledgements

Schatz Lab Giuseppe Narzisi Shoshana Marcus Rob Aboukhalil Mitch Bekritsky Charles Underwood James Gurtowski Alejandro Wences

Hayan Lee Rushil Gupta Avijit Gupta Shishir Horane Deepak Nettem Varrun Ramani Eric Biggers CSHL Hannon Lab Iossifov Lab Levy Lab Lippman Lab Lyon Lab Martienssen Lab McCombie Lab Ware Lab Wigler Lab

<u>NBACC</u> Adam Phillippy Sergey Koren

<u>JHU/UMD</u> Steven Salzberg Mihai Pop Ben Langmead Cole Trapnell

Thank You!

http://schatzlab.cshl.edu/

